[Mathematical Economics]

01. Find the following systems of difference equations.

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = \begin{pmatrix} 0.6 & 0.2 \\ 0.1 & 0.7 \end{pmatrix} \begin{pmatrix} x_t \\ y_t \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ with } \begin{pmatrix} x_o \\ y_o \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

1.Find the eigenvalues and eigenvectors of coefficient matrix.(10 points)

2.Solve the difference equation for x_t, y_t . (20 points)

02.For Matrix *B* given below, Calculate the determinant of B^{-1} . (20 points)

$$B = \begin{pmatrix} 2 & 1 & 1 & -1 \\ 1 & 0 & 3 & 1 \\ -1 & 3 & 2 & 1 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

03.Find the taylor series for $y = \log_2 x$ at x = 1. (10 points)

04. Suppose that we minimize the strictly convex function F(x,y,z) subject to x+y+pz=b in this problem. p,b are all positive constants. x,y,z are positive. F(x,y,z) satisfies $\frac{\partial F}{\partial x} > 0$, $\frac{\partial F}{\partial y} > 0$, $\frac{\partial F}{\partial z} > 0$. Let V(p,b) the minimized value of F(x,y,z) given g(p,b). Find the signs of $\frac{\partial V}{\partial p}$ and $\frac{\partial V}{\partial b}$. (10 points) 05. Find the following optimization problem. (20 points)

Maximize
$$x^a + y^a$$
, $(\forall 0 < a < 1, constant)$
s.t $x + y \le 1, x \ge 0, y \ge 0$

1.Write Lagrangian and First-order conditions. (10 points)

2.Find (x,y) that satisfies all of first-order conditions. (15 points)

3.Check second-order-conditions and obtain the solution of (x^*, y^*) . (15 points)

[Statistics]

01.Let *X* discrete Random Variable where probability mass function(**p**,**m**,**f**) is

$$P(X=0) = \lambda + (1-\lambda)e^{-\theta}$$
$$P(X=x) = \frac{(1-\lambda)e^{-\theta}\theta^x}{x!}I(x=1,2,\dots)$$

with $0 \le \lambda < 1, \ \theta > 0.$

1. What is the Expectation and Variance, E(X), Var(X)?

2. What is the probability function of X given, X > 0, denoted by P(X|X>0)?

3.Now assume that $\lambda = 0$. obtain the conditional Expectation and the conditional variance denoted by E(X | X > 0), Var(X | X > 0).

2020학년도 연세대학교 상경대학 편입학 시험 복원문제

02.Let U be a finite population of size N, we define the following sampling design. we first select a sample A_1 according to simple Random sampling without replacement of fixed size n_1 . we then select a sample A_2 in U outside of A_1 according to simple Random sampling without replacement of fixed size n_2 . The Final sample A consists of A_1 and A_2 with size of $n(=n_1+n_2) < N$.

1. What is the sampling distribution of A_1 , denoted by $P(A_1)$?

2.What is the sampling distribution of A_2 given A_1 , denoted by $P(A_2 \mid A_1)$?

3. What is the sampling distribution of A?

4.Suppose that we now directly draw a sample *B* according to a simple Random Sampling without of fixed size $n(=n_1+n_2) < N$. obtain the sampling distribution of *B* and compare it with the sampling distribution of *A*.

5.We define the estimator of the finite population mean of $y, \ \overline{y}$ by

$$\overline{y_{\lambda}} = \lambda \overline{y_1} + (1 - \lambda) \overline{y_2}$$

with $0 < \lambda < 1$. where $\overline{y_1}$ is the sample mean of y in A_1 . $\overline{y_2}$ is the sample mean of y in A_2 . show that $\overline{y_{\lambda}}$ is the unbiased estimator for \overline{y} for any λ .

6.Express variance of $V(\overline{y_{\lambda}})$ in terms of $V(\overline{y_1}), V(\overline{y_2}), Cov(\overline{y_1}, \overline{y_2})$. Note that you have to obtain the closed forms of $Var(\overline{y_1}), Var(\overline{y_2}), Cov(\overline{y_1}, \overline{y_2})$

7. Find the optimal value of λ in terms of n_1, n_2 that satisfies minimizing variance of $\overline{y_{\lambda}}$, $V(\overline{y_{\lambda}})$.